Page **1** of **36**

National Education Policy-2020 Common Minimum Syllabus for all U.P. State Universities/ Colleges SUBJECT: ELECTRONICS

Name	Designation	Affiliation
Steering Committee		
Mrs. Monika S. Garg, (I.A.S.)	Additional Chief Secretary	Dept. of Higher Education U.P., Lucknow
Chairperson Steering Committee		
Prof. Poonam Tandan	Professor	Dept. of Physics, Lucknow University, U.P.
Prof. Hare Krishna	Professor	Dept. of Statistics, CCS University Meerut, U.P.
Dr. Dinesh C. Sharma	Associate Professor	Dept. of Zoology, K.M. Govt. Girls P.G. College
		Badalpur, G.B. Nagar, U.P.
Supervisory Committee-Scien	ice Faculty	
Dr. Vijay Kumar Singh	Associate Professor	Dept. of Zoology, Agra College, Agra
Dr. Santosh Singh	Dean	Dept. of Agriculture, Mahatma Gandhi Kashi
_		Vidhyapeeth, Varanasi
Dr. Baby Tabussam	Associate Professor	Dept. of Zoology, Govt. Raza P.G. College
		Rampur, U.P.
Dr. Sanjay Jain	Associate Professor	Dept. of Statistics, St. John's College, Agra
Syllabus Developed by:		
Name	Designation	Affiliation
Dr. Manish Mishra	Professor and Head	Department of Electronics, DDU Gorakhpur
		University, Gorakhpur
Dr. Geetika Srivastava	Associate professor	Department of Physics and Electronics,
		Dr. Ram Manohar LohiaAvadh University,
		Ayodhya
Dr. J. P. Pandey	Associate Professor	Department of Physics, MLKPG College
		Balrampur UP

Page **2** of **36**

Department of Higher Education

U.P. Government, Lucknow

National Education Policy-2020 Common Minimum Syllabus for all U.P. State Universities

Proposed Titles for Theory and Practical Papers Under Graduate Programme

SUBJECT: ELECTRONICS

DR. MANISH MISHRA Professor and Head Department of Electronics DDU Gorakhpur University, Gorakhpur

M:9415875144manish.ddu1976@gmail.co

<u>m</u>

DR. GEETIKA SRIVASTAVA Associate professor Department of Physics and Electronics Dr. RamManoharLohiaAvadhUniversity, Ayodhya M:9935031752 geetika_gkp@rediffmail.com DR. J.P.PANDEY Associate Professor Department of Physics MLKPG College Balrampur UP M:9450517226 jppandeymlk@gmail.com

Page **3** of **36**

Department of Higher Education, U.P. Government, Lucknow National Education Policy-2020Common Minimum Syllabus for all U.P. State Universities **Semester-wise Titles of the Papers in B.Sc. (Electronics)**

		SEME	STER-WISETITLESOFTHEPAPERSINUGELECTR	ONICSCOURSE	
YEAR	R SEME- COURSE PAPER TITLE PAPER TITLE			THEORY / PRACTICAL	CREDIT
	1	1	CERTIFICATE	1	1
			INBASICELECTRONICS		
	I	B140101T	Basic Circuit Theory and Network Analysis	Theory	4
	-	B140102P	Circuits and Networks Lab	Practical	2
FIRST YEAR	п	B140201T	Semiconductor Devices and Electronic Circuits	Theory	4
FII YE	1	B140202P	Semiconductor Devices and Circuits Lab	Practical	2
			DIPLOMA		
			INADVANCED ELECTRONICS		
_	Ш	B140301T	Analog Electronics	Theory	4
N N		B140302P	Analog Electronics Lab	Practical	2
SECOND	IV	B140401T	Digital Electronics	Theory	4
S	11	B140402P	Digital Electronics Lab	Practical	2
			DEGREE INBACHELOROFSCIENCE		
		B140501T	Electromagnetics and Antenna Fundamentals	Theory	4
	V	B140502T	Microprocessor Programming and Interfacing	Theory	4
• •		B140503P	Antenna and Microprocessor Lab	Practical	2
THIRD		B140601T	Communications Electronics	Theory	4
ET IX	VI	B140602T	Linear Integrated Circuits	Theory	4
		B140603P	IC and Communication Lab	Practical	2

Page **4** of **36**

	PROGRAMME SPECIFIC OUTCOMES (PSOs)
	CERTIFICATE
FIRST YEAR	INBASICELECTRONICS Identifies the basic elements and systems used in real analog world and modern digital world. Explore fundamental laws and elements of electrical circuits. Understand DC circuit, theorems, and networks. Understands AC circuits and related terminologies with examples. Understand the basic material and properties of semiconductors Explore the constructional features of basic semiconductor devices. Describe the biasing principles of semiconductor devices like diode and transistors Explain the I-V characteristics of semiconductor devices like diode, BJT, UJT, JFET and MOS FET
	DIPLOMA INADVANCED ELECTRONICS
SECOND YEAR	Convert different type of codes and number systems in computers and communication. Describe switch model used to illustrate building blocks of digital circuits. Use Boolean algebra and Karnaugh maps for reduction of logic expressions and circuits. Perform arithmetic operation on binary numbers and design simple arithmetic logic circuits. The learner will be able to develop Ability to apply basic concepts of P-N Junction and Transistor in developing simple application circuits. Understand the power supply at block level. Attain knowledge of various amplifiers and their comparison. Identify the applications of JFET & MOSFET. Familiarization with basics of thyristor family.
	DEGREE INBACHELOROFSCIENCE
THIRD YEAR	This programme contains very important aspects of electronics course curriculum, namely, Communication,Electromagnetics,antenna,Microprocessor∧ Integrated Circuits fundamentals. The learner will be able to develop Ability to apply basic concepts of electronics circuit design in application based circuit development. Understand the fundamentals of communication systems. Use microprocessors to design systems for real life application.

Page **5** of **36**

EAR	SEME- STERPAPERPAPER TITLE		R PAPER TITLE PREREQUISITE For Paper		ELECTIVE For Major Subjects	
	1		·	CERTIFICATE INBASICELECTRONICS		
	STER	Theory Paper-1	Basic Circuit Theory and Network Analysis	Physics in 12 th / Mathematics in12 th	YES Open to all	
FIRST YEAR	SEMESTER I	Practical Paper	Circuits and Networks Lab	Opted Sem I, Th Paper-1	YES Phy./Chem./Comp. Sc./ Math./Stat	
FIRS	ES –	Theory Paper-1	Semiconductor Devices and Electronic Circuits	Physics in 12 th / Mathematics in 12 th	YES Open to all	
		Practical Paper	Semiconductor Devices and Circuits Lab	Opted Sem II, Th Paper-1	YES Phy./Chem./Comp. Sc./ Math./Stat.	
]	DIPLOMA INADVANCED ELECTRONICS		
	STER I	Theory Paper-1	Analog Electronics	Passed Sem I, Th Paper-1	YES Phy./Chem./Comp. Sc./ Math./Stat.	
SECOND YEAR	SEMESTER	Practical Paper	Analog Electronics Lab	Opted Sem III, Th Paper-1	YES Phy./Chem./Comp. Sc./ Math./Stat.	
SECON	STER	Theory Paper-1	Digital Electronics	Physics in 12 th / Mathematics in 12 th	YES Open to all	
	SEMESTER	Practical Paper	Digital Electronics Lab	Opted Sem IV, Th Paper-1	YES Phy./Chem./Comp. Sc./ Math./Stat.	
	<u> </u>		1	DEGREE INBACHELOROFSCIENCE		

Page **6** of **36**

		Theory	Electromagnetics and Antenna	Passed	YES
	ER	Paper-1	Fundamentals	Sem I, Th Paper-1	Phy./Chem./Comp. Sc./Math./Stat.
	ST	Theory	Microprocessor Programming	Passed	YES
	SEMESTER V	Paper-2	and Interfacing	Sem IV, Th Paper-1	Phy./Chem./Comp. Sc./ Math./Stat.
	SE	Practical	Antenna and Microprocessor	Opted	YES
AR		Paper	Lab	Sem V, Th Paper-2	Phy./Chem./Comp. Sc./Math./Stat.
X E		Theory	Communications Electronics	Passed	YES
		Paper-1		Sem III, Th Paper-1	Phy./Chem./Comp. Sc./Math./Stat.
HIRD	~			Sem IV, Th Paper-1	
	E E	Theory	Linear Integrated Circuit	Passed	YES
	ISE	Paper-2	C C	Sem II, Th Paper-1	Phy./Chem./Comp. Sc./Math./Stat.
	W	-		Sem III, Th Paper-1	
	SEMESTER	Practical	IC and Communication Lab	Opted	YES
		Paper		Sem VI, Th Paper-1	Phy./Chem./Comp. Sc./Math./Stat.

Page **7** of **36**

Progra	amme/Class: Certificate	Year: First	Semester: First	
I	Paper-1 Theory		Subject: Electronics	
Cour	Course Code:B140101T Course Title: Basic Circuit Theory and Network Analysis			
Ide Ex Un	eutcomes: entifies the basic elements and syst plore fundamental laws and eleme iderstand DC circuit, theorems, and iderstands AC circuits and related	nts of electrical circuits. l networks.	l circuits.	
	Credits: 4		Compulsory	
	Max. Marks: 25+75		Min. Marks:	
		Total	No. of Lectures $= 60$	
Unit			Topics	No. of Lectures
I	Basic Circuit Concepts: Voltage and Current Sources, Resistors: Fixed and Variable resistors, Construction and Characteristics, Color coding of resistors, resistors in series and parallel. Inductors: Fixed and Variable inductors, Self and mutual inductance, Faraday's law and Lenz's law of electromagnetic induction, Energy stored in an inductor, Inductance in series and parallel, Testing of resistance and inductance using multi meter. Capacitors: Principles of capacitance, Parallel plate capacitor, Permittivity, Definition of Dielectric Constant, Dielectric strength, Energy stored in a capacitor, Air, Paper, Mica, Teflon, Ceramic, Plastic and Electrolytic capacitor, Construction and application, capacitors in series and parallel, factors governing the value of capacitors, testing of capacitors using multi meter.			
п	 Circuit Analysis: Kirchhoff's Current Law (KCL), Kirchhoff's Voltage Law (KVL), Node Analysis, Mesh Analysis, Star-Delta Conversion. DC Transient Analysis: RC Circuit- Charging and discharging with initial charge, RL Circuit with Initial Current, Time Constant, RL and RC Circuits With Sources, DC Response of Series RLC Circuits. AC Circuit Analysis: Sinusoidal Voltage and Current, Definition of Instantaneous, Peak, Peak to Peak, Root Mean Square and Average Values. Voltage-Current relationship in Resistor, Inductor and Capacitor, Phasor, 			
III	Complex Impedance, Pow Sinusoidal Circuit Analysi	er in AC Circuits: Instant s for RL, RC and RLC C ries and Parallel RLC Cir	relationship in Resistor, Inductor and Capacitor, Phasor, aneous Power, Average Power, Reactive Power, Power Factor. ircuits.Resonance in Series and Parallel RLC Circuits, rcuits, Quality (Q) Factor and Bandwidth. Passive Filters: Low	12

Г	Network Theorems: Principal of Duality, Superposition Theorem, Thevenin's Theorem, Norton's Theorem, Reciprocity Theorem, Millman's Theorem, Maximum Power Transfer Theorem.	10
	AC circuit analysis using Network theorems. Two Port Networks: Impedance (Z) Parameters, Admittance (Y) Parameters, Transmission (ABCD) Parameters.	10
\ \	Network Graph Theory: Equivalent Graph, Incidence matrix, Tie-Set and Cut Set.	10
Sugges	ted books:	
1.	S. A. Nasar, Electric Circuits, Schaum's outline series, Tata McGraw Hill (2004)	
2.	Electrical Circuits, M. Nahvi and J. Edminister, Schaum's Outline Series, Tata McGraw-Hill.(2005)	
3.	B. C. Sarkar and S. Sarkar, Analog Electronics: Devices and Circuits (Revised edition), Damodar Group (Publishers), Burdwa 978-93-85775-15-4 (2019)	an, ISBN:
4.	Robert L. Boylestad, Essentials of Circuit Analysis, Pearson Education (2004)	
5.	W. H. Hayt, J. E. Kemmerly, S. M. Durbin, Engineering Circuit Analysis, Tata McGraw Hill(2005)	
6.	Alexander and M. Sadiku, Fundamentals of Electric Circuits, McGraw Hill (2008)	
7.	Bell,ElectronicCircuits,Oxford University Press	
8.	Carlson, Circuits, cengage	
9.	Kuo,Network Analysis and Synthesis,Wiley	
10.	Dorf and Svoboda, Introduction to Electric Circuits, Wiley	
	Decarlo and Lin,Linear circuit Analysis,Oxford	

Page **9** of **36**

Suggestive Digital Platforms / Web Links 1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/ 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd 3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx 4. SwayamPrabha - DTH Channel, https://www.swayamprabha.gov.in/index.php/program/ This course can be opted as an Elective by the students of following subjects Open to all Suggested Continuous Internal Evaluation (CIE) Methods Total Marks: 25 House Examination/Test: 10 Marks Written Assignment/Presentation/Project / Research Orientation/ Term Papers/Seminar: 10 Marks Class performance/Participation: 5 Marks **Course Prerequisites** Passed Sem I, Th Paper-1 **Suggested Equivalent Online Courses** 1. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/ 2. edX,<u>https://www.edx.org/course/subject/electronics</u> 3. MIT Open Course Ware - Massachusetts Institute of Technology, https://ocw.mit.edu/courses/#electrical-engineering-and-computer-science 4. Swayam - Government of India,<u>https://swayam.gov.in/explorer?category</u> 5. National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/course.html **Further Suggestions**

Page **10** of **36**

Progr	amme/Class: Certificate	Year: First	Semester: First	
		Sub	ject: Electronics	
Cours	se Code: B140102P		Course Title: Circuits and Networks Lab	
Cours	e Outcomes (COs)			
	-		nd their interconnections.Measurement precision and perf	
Lab Ex	xperiments. Some online Virtu	al Lab Experiments will also give	ve an insight in simulation techniques and provide a basis	for modeling.
	Credits: 2		Core Compulsory / Elective	
	Max. Marks: 25	+75	Min. Marks:	
		Total No. of Lectures-Tutoria	s-Practical (in hours per week): L-T-P: 0-0-4	
Unit				No. ofLectures
Unit		Торі		
	Lab Experiment List			
	1. Familiarization with			60
		in series, parallel and series -		
		s & Inductors in series & Parall	el.	
		r – Checking of components.		
		burces in series, parallel and ser	ries – Parallel	
		nd Current dividers		
		mplitude, Frequency & Phase d	Inference using CRO.	
	 Verification of Kir Verification of No 			
	5. Verification of The			
			ation of the Maximum Power Transfer Theorem.	
		Constant, Differentiator, Integr		
		v Pass RC Filter and study of it		
		its Frequency Response.		
	11. Study of the Freq			
		ance at Resonance (c) Quality I		
	Trequency (o) imped	and a resonance (c) quarty i		
F		Online Virtual Lab Ex	periment List / Link	
N	Virtual Labs at Amrita Vishwa	Widyapeethamhttps://vlab.amrit	a.edu/	

Page **11** of **36**

Page **12** of **36**

Progra	mme/Class: Certificate	Year: Fi	rst	Semester: Second	
	Paper-1 Th	ieory		Subject: Electronics	
	irse Code:B140201T		Course T	itle: Semiconductor Devices and Electronic Circuits	
Course O 1.Understa 2. Explore 3. Describe 4. Explain to 5.The learn 6. Understa 7. Attain kn 8. Identify	utcomes: nd the basic material and prop the constructional features of l the biasing principles of semi- the I-V characteristics of semi-	basic semiconduct iconductor devices conductor devices c concepts of P-N level. s and their compar OSFET.	ductors tor devices s like diode s like diode Junction i		
	Credits: 4			Compulsory	
	Max. Marks: 25+75			Min. Marks:	
			Total No.	of Lectures = 60	
Unit			То	pics	No. of Lectures
I	 Semiconductor Basics Introduction to Semiconductor Materials, Intrinsic Semiconductors and Extrinsic semiconductors, n type semiconductors with reference to energy levels, Donors, Acceptors, concept of Fermi Level. PN Junction Diode Symbol, pins, unbiased diode, depletion layer, barrier potential, working in forward bias and reverse bias, concept of break down, I-V characteristics, knee voltage, break down voltage, bulk resistance, zener diode, light emitting diode, photo diode, solar cell. 			14	
п	gain, α , β of BJT, configuration	NP and NPN, unb ions CE,CB and C	C, with re	istor, Biased Transistor, transistor currents, concept of current spect to CE configuration I-V characteristics-base curve and iques - voltage divider bias, emitter bias, collector feedback	12

Page **13** of **36**

ш	UJT, JFET and MOSFET Symbol, types, construction, working principle, I-V characteristics, Specifications parameters of: Uni-Junction Transistor (UJT), Junction Field Effect Transitor (JFET), Metal Oxide Semiconductor FET (MOSFET), comparison of JFET, MOSFET and BJT.	10
IV	Diode Circuits Half wave rectifier, transformer, full wave rectifier, bridge rectifier, choke input filter, capacitor input filter, peak inverse voltage and surge current, block diagram of power supply, zener regulator, clippers and limiters, clampers and voltage multipliers	12
v	Transistor Circuits Transistor as a switch, transistor as an amplifier, class A operation, class B operation, Emitter follower, class B push- pull emitter follower, class C operation, Single stage RC coupled CE amplifier, voltage gain, concept of frequency response and bandwidth, JFET biasing in ohmic/active region, MOSFET in digital switching	12
-	Recommended Book:	•
	Electronic Principles - Albert Malvino, David J. Bates, 7th Edition (2016)	
	Basic Electronics - B, Grob, Mitchel E. Schultz, 11th Editio, (2007) Solid state Electronic Devices, B. G. Streetman and S. Banerjee, Pearson Education (2006)	
	Electronic Principles, Albert Malvino, David J. Bates, 7th Edition (2016)	
	Basic Electronics - B, Grob, Mitchel E. Schultz, 11th Edition, (2007)	
	Basic Electronics and Linear circuits, N. N. Bhargava, D. C. Kulshreshtha, S. C. Gupta, Tata McGraw Hill (2008)	
7. 5	emiconductor devices, Kanaan Kano, Pearson Education (2004)	

Page **14** of **36**

Suggestive Digital Platforms / Web Links
5. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/
6. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
7. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx
8. SwayamPrabha - DTH Channel, <u>https://www.swayamprabha.gov.in/index.php/program/</u>
Semiconductor Devices:
Virtual Labs an initiative of MHRD Govt. of India
1. <u>http://vlabs.iitkgp.ernet.in/be/index.html#</u>
2. Virtual Labs at Amrita VishwaVidyapeetham, https://vlab.amrita.edu/
3. Virtual Labs an initiative of MHRD Govt. of India, http://vlabs.iitkgp.ernet.in/be/index.html#
This course can be opted as an Elective by the students of following subjects
Open to all
Suggested Continuous Internal Evaluation (CIE) Methods
Total Marks: 25
House Examination/Test: 10 Marks
Written Assignment/Presentation/Project / Research Orientation/ Term Papers/Seminar: 10 Marks Class performance/Participation: 5 Marks
Course Prerequisites
Physics in 12 th / Mathematics in 12 th
Suggested Equivalent Online Courses
6. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/
7. edX, <u>https://www.edx.org/course/subject/physics</u>
8. MIT Open Course Ware - Massachusetts Institute of Technology, https://ocw.mit.edu/courses/
9. Swayam - Government of India, <u>https://swayam.gov.in/</u>
10. National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/course.html
Further Suggestions

Page **15** of **36**

	Year: First	Semester: Second	
ourse Code: B140202P		ect: Electronics Title: Semiconductor Devices and Circuits Lab	
ourse coue. D1402021	Course	The semeonductor bevices and chicults Lab	
ourse Outcomes (COs)			
		nd their uses in electronic equipment. Measurement precision an	-
5 I	Online Virtual Lab Experiments ca	an give an insight in simulation techniques and provide a basis for r	nodeling.
Credits: 2		Core Compulsory / Elective	
Max. Marks: 25	+75	Min. Marks:	
	Total No. of Lectures-Tutorials-	Practical (in hours per week): L-T-P: 0-0-4	
nit	То	pics	No. of Lectures
 Study of the I-V Cha Study of Characteris Study of Hall Effect. Study of the half wa' Designing and testin Study of clipping an Designing of a Singl Study of the Colpitt' Study of the Hartley Study of the Phase S 	racteristics of the Common Col racteristics of the UJT and SCR racteristics of JFET and MOSF tics of Solar Cell we rectifier and Full wave rectifi g of 5V/9 V DC regulated powe d clamping circuits. e Stage CE amplifier. and C Power Amplifier. s Oscillator. 's Oscillator.	tion of BJT and obtain ri, ro, β. se Configuration of BJT and obtain ri, ro, α. llector Configuration of BJT and obtain voltage gain, ri, ro. 8. ET fer. er supply and find its load-regulation	60

Page **16** of **36**

Progra	mme/Class: Diploma	Year: Second	Semester: Third		
Paper-1 Theory Subject: Electronics					
Course Code: B140301T Course Title: Analog Electronics					
1. Con 2. Des 3. Use	r should be able to nvert different type of codes a scribe switch model used to ill e Boolean algebra and Karnau form arithmetic operation on b	ustrate building blocks of d gh maps for reduction of log	igital circuits. gic expressions and circuits. simple arithmetic logic circuits.		
	Credits: 4		Compulsory		
	Max. Marks: 25+75		Min. Marks:		
Unit			. of Lectures = 60 opics	No. of Lectures	
I	voltage and power, rectifier rectifiers; Doubler, trippler a Filter Circuits : Series indu D.C. voltage and ripple fact Regulator Circuits : Load of voltage regulation; Linea consideration of each circuit	Ill and bridge rectifier circ er efficiency and ripple fa and quadrupler. uctor, shunt capacitor, L-se or when they are fed with <i>i</i> and line regulation, stabili ar voltage regulator circui it. and Switch Mode Power	cuits with resistor load, their output waveforms, output DC ctor; Design consideration and rating; Voltage multiplying ection, Π -section and R-C filter circuits; Evaluation of output AC full wave rectifier; Design consideration. zation ratio, internal impedance and temperature coefficient ts; Non-feedback type; Series and shunt regulator; Design Supply : SCR controlled half and full wave rectifier circuits nd stability in SMPS.		
П	Amplifier : Basic Require Biasing and Stability : Ge factors; Transistor biasing; Small Signal Transistor A	ments and Principles. eneral principle of transisto Fixed bias, Collector to ba mplifiers: Small signal tra	or amplifier; Load line and Q point, thermal stability, stability se bias, emitter bias and voltage divider bias circuits. ansistor amplifier circuits in different configurations and Z, Y and distortion in SST amplifier.		

Page **17** of **36**

ш	Multistage Amplifier: Cascading of amplifier and voltage gain; R-C, L-C and T-C coupled two stage amplifier circuits and their phase and frequency response and bandwidth. Negative Feedback Amplifier: C-E amplifier with series and shunt feedback; Emitter follower; Source follower, Cascade amplifier for transistor and FET, Darlington pair.	10
IV	Power Amplifiers: Difference between voltage and power amplifier, classification of power amplifiers, Class A, Class B, Class C and their comparisons. Operation of a Class A single ended power amplifier. Operation of Transformer coupled Class A power amplifier, overall efficiency. Circuit operation of complementary symmetry Class B push pull power amplifier, crossover distortion, heat sinks. Tuned amplifiers: Circuit diagram, Working and Frequency Response for each, Limitations of single tuned amplifier, Applications of tuned amplifiers in communication circuits. Double tuned amplifier.	12
v	 Audio Oscillators: Positive feedback and Bark Hausen criteria of sustained oscillation; Phase shift and Wien bridge oscillator. RF Oscillator: Tuned base, Tuned collector, Hartley and Colpitt oscillator circuit and their analysis; Negative resistance oscillator; Frequency stability; Crystal controlled oscillator; Pierce and Miller circuits. 	12
2. Electrica		
4. Electron 5. Electron	ic Circuits: Discrete and Integrated, D. L. Schilling and C. Belove, Tata McGraw Hill ic Circuits: Discrete and Integrated, D. L. Schilling and C. Belove, Tata McGraw Hill ic Circuit Analysis and Design, Donald A. Neamen, Tata McGraw Hill	

Suggestive Digital Platforms / Web Links

Page **18** of **36**

1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/

2. National Programme on Technology Enhanced Learning (NPTEL), <u>https://www.youtube.com/user/nptelhrd</u>

3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx

4. SwayamPrabha - DTH Channel, https://www.swayamprabha.gov.in/index.php/program/

This course can be opted as an Elective by the students of following subjects

Phy./Chem./Comp. Sc./ Math./Stat

Suggested Continuous Internal Evaluation (CIE) Methods

Total Marks: 25

House Examination/Test: 10 Marks

Written Assignment/Presentation/Project / Research Orientation/ Term Papers/Seminar: 10 Marks

Class performance/Participation: 5 Marks

Course Prerequisites

Passed Sem III, Th Paper-1 Sem IV, Th Paper-1

Suggested Equivalent Online Courses

- 1. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/
- 2. edX,https://www.edx.org/course/subject/
- 3. MIT Open Course Ware Massachusetts Institute of Technology, https://ocw.mit.edu/courses/
- 4. Swayam Government of India, https://swayam.gov.in/
- 5. National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/course.html

Further Suggestions

Page **19** of **36**

Programme/Class: Diploma	Year: Second	Semester: Third
Subject: Electronics		
Course Code: B140302P	Cours	e Title: Analog Electronics Lab

Course Outcomes (COs)

Experimental Electronics has the most striking impact on the academia and industry wherever the instruments are used to know the Characteristics of devices and circuits behavior are very important in view of its application in electronic equipment. Measurement precision and perfection is achieved through Lab Experiments. Online Virtual Lab Experiments give an insight in simulation techniques and provide a basis for modeling.

Credits: 2	Core Compulsory / Elective

	Max. Marks: 25+75	Min. Marks:	
	Total No. of Lectures-	Tutorials-Practical (in hours per week): L-T-P: 0-0-4	
nit		Topics	No. ofLectures
	Lab	Experiment List	
	Study of full wave and bridge rectifier.		
	1. Study of unregulated power supply.		
	2. Study of Zener and emitter follower reg	ulator circuits.	
	3. Study of transistor series and shunt regu	ilator circuits.	
	4. Study of controlled rectification using S	SCR.	
	5. To study biasing stability in BJT.		
	6. Phase and frequency response of RC ne	twork.	
	7. Phase and frequency response of low pa		
	8. Phase and frequency response of interst		
	9. Phase and frequency response of R-C co		
	10. Generation and Fourier analysis of sa		
		RO and their measurement by LCR bridge.	
	12. Design of regulated low voltage power		
	13. Design of low signal R-C coupled am		
	Basic knowledge of the circuits of the		
	Identification of electronic componen		60
	16. Study of ac power control using SCR		
	On	line Virtual Lab	
N	Virtual Labs at Amrita VishwaVidyapeethamhttps://	vlab.amrita.edu/	

Page **20** of **36**

Programme/Class: Diploma Year: Second Semester: Fourth						
	Paper-1 Theory Subject: Electronics					
Cou	Course Code: B140401T Course Title: Digital Electronics					
 Course outcomes: At the end of this course, students will be able to Convert different type of codes and number systems in computers and communication. Describe switch model used to illustrate building blocks of digital circuits. Use Boolean algebra and Karnaugh maps for reduction of logic expressions and circuits. Perform arithmetic operation on binary numbers and design simple arithmetic logic circuits. 						
	Credits: 4		Compulsory			
	Max. Marks: 25+75		Min. Marks:			
Unit			o. of Lectures = 60 opics	No. of Lectures		
I	Number Systems and Codes Binary Number System, Binary-to-decimal Conversion, Decimal-to-binary Conversion, Octal Numbers, Hexadecimal 14 Numbers, The ASCII Code, The Excess-3 Code, The Gray Code, Error Detection and Correction . 14					
II	Digital principles and logic Definitions for Digital Signals, Digital Waveforms, Digital Logic, Digital Computers, Digital Integrated Circuits, Digital IC Signal Levels, Digital Logic, The Basic Gates-NOT, OR, AND, Universal Logic Gates-NOR, NAND, AND- OR-Invert Gates, Positive and Negative Logic					
III	II Combinational Logic Circuits Boolean Laws and Theorems, Sum-of-Products Method, Truth Table to Karnaugh Map, Pairs, Quads, and Octets, Karnaugh Simplifications, Don't-care Conditions, Product-of-sums Method, Product-of-sums Simplification, Simplification by QUINE-Mc-CLUSKY Method					
IV	Arithmetic Circuits Binary Addition, Binary Subtraction, Unsigned Binary Numbers, Sign-magnitude Numbers, 2's Complement epresentation, 2's Complement Arithmetic, Arithmetic Building Blocks, The Adder-subtracter, Fast-Adder, Arithmetic Logic Unit, Binary Multiplication and Division					
V	Ripple or serial counter – As	ynchronous Up/Down cour	ter-Slave -Edge triggering – Level Triggering Asynchronous ter - Synchronous counters – Synchronous Up/Down counters rs – shift registers - Universal shift registers – Shift register	12		

Page **21** of **36**

counters – Ring counter – Shift counters - Sequence generators. Logic Families

Suggested Books:

- 1. Digital System Design, Morris Mano, Pearson Education (2014)
- 2. Digital Principals, Schaum's outline series, Tata McGraw Hill (2006)
- 3. Digital Fundamentals, T. L. Floyld, Pearson Education (2013)
- 4. Electronic Principals, A. P. Malvino, Tata McGraw-Hill, (2003)

Suggestive Digital Platforms / Web Links

5. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/

- 6. National Programme on Technology Enhanced Learning (NPTEL), <u>https://www.youtube.com/user/nptelhrd</u>
- 7. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx
- 8. SwayamPrabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/

This course can be opted as an Elective by the students of following subjects

Phy./Chem./Comp. Sc./ Math./Stat

Suggested Continuous Internal Evaluation (CIE) Methods

Total Marks: 25

House Examination/Test: 10 Marks

Written Assignment/Presentation/Project / Research Orientation/ Term Papers/Seminar: 10 Marks Class performance/Participation: 5 Marks

Physics in 12th / Mathematics in 12th

Course Prerequisites

Suggested Equivalent Online Courses

- 1. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/
- 2. edX,https://www.edx.org/course/subject/
- 3. MIT Open Course Ware Massachusetts Institute of Technology, https://ocw.mit.edu/courses/
- 4. Swayam Government of India, https://swayam.gov.in/
- 5. National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/course.html

Further Suggestions

Page **22** of **36**

Prog	ramme/Class: Certificate	Year:	Second	Semester: Fourth		
	Subject: Electronics					
Cour	Course Code: B140402P Course Title: Digital Electronics Lab					
			Course	Dutcomes (COs)		
	ne end of this course, students will					
	Convert different type of codes a					
$\begin{vmatrix} 2 \\ 2 \end{vmatrix}$						
3.	Perform arithmetic operation on					
<u>т.</u>	Credits: 2	oniary numbers a	ind design s	Core Compulsory / Elective		
	Max. Marks: 25+75			Min. Marks:		
			T (1 D			
	101	al No. of Lectures	- I utorials-P	ractical (in hours per week): L-T-P: 0-0-4	No. of Lectures	
Unit			Topics		No. of Lectures	
		Lab	Experiment	List		
1	1.Study of AND, OR, NOT			tes using IC		
	2. Designing of all the logi					
	3. Designing of all the logi		R gate IC			
	4. Verification of Demorga					
	5. Construction of gates us Design and Verify Followi		onents			
	6. Code conversion	ng				
	7. Half adder and Full adde					
	8. Half subtractor and Full	subtractor				
	9. Multiplexer and De-Mul	tiplexer				
	10. Encoder and Decoder					
	11. Study of Flip flops					
	12. Shift register					
	13. Ripple counter					
		60				
	Virtual Labs at Amrita					
	VishwaVidyapeetham <u>https://vlab.an</u>	nrita.edu/				

Page **23** of **36**

UnitIopicsLecturIVector Analysis, Poisson's Equation and Laplace Equation: Scalars and Vectors, Unit Vector and Vector Components, Vector Field, Vector Algebra, Rectangular (Cartesian) Coordinate, Curvilinear Coordinates: Unit Vectors and Scalar Factors, Cylindrical Coordinate and Spherical Coordinate, Differential Length, Area and Volume, Line, Surface and Volume Integrals, Del Operator, Gradient of a Scalar, Divergence of a Vector and Divergence Theorem, Curl of a Vector and Stokes's Theorem, Green's Theorem, Laplacian of a Scalar.14IIElectrostatics: Coulomb's Law, Electric Field and Electric Potential due to Discrete and Continuous Charge Distributions, Electric Flux Density, Gauss's Law – Maxwell's Equation and Applications, Electric Dipole, Electric Fields in Different Materials, Current and Current Density, Polarization, Dielectric Constant, Linear and Nonlinear, Homogeneous and Inhomogeneous, Isotropic and Anisotropic Dielectrics, Boundary Conditions, Poisson's and Laplace's Equations and their Derivations and Examples of Solutions, Uniqueness Theorem, Capacitance and Capacitors, Method of Images, Electrostatic Energy and Forces, Energy Density.12IIIMagnetostatics: BiotSavart's Law and Applications, Magnetic Dipole, Ampere's Circuital Law – Maxwell's Equation and Applications, Magnetic Flux Density – Maxwell's Equation, Scalar and Vector12	Progr	amme/Class: Degree	Year: Third	Semester: Fifth					
Course outcomes: At the end of this course, students will be able to 1 Getting familiar with vector algebra, coordinate system and coordinate conversion 2 Plotting of fields (Electrostatic and Magnetostatics) and solution of Laplace's equation. 3 Physical interpretation of Maxwell's equation and problem solving in different media. 4 Understanding of propagation of an electromagnetic wave. 5.Basics of antenna ,its radiation behavior and different types of antenna Credits: 4 Compulsory Max. Marks: 25+75 Min. Marks:		Paper-1	Гheory	Subject: Electronics					
At the end of this course, students will be able to 1 Getting familiar with vector algebra, coordinate system and coordinate conversion 2 Plotting of fields (Electrostatic and Magnetostatics) and solution of Laplace's equation. 3 Physical interpretation of Maxwell's equation and problem solving in different media. 4 Understanding of propagation of an electromagnetic wave. 5.Basics of antenna ,its radiation behavior and different types of antenna Credits: 4 Compulsory Max. Marks: 25+75 Min. Marks:	Course Co	de: B140501T	Course Title: 1	Electromagnetics and Antenna Fundamentals					
1 Getting familiar with vector algebra, coordinate system and coordinate conversion 2 Plotting of fields (Electrostatic and Magnetostatics) and solution of Laplace's equation. 3 Physical interpretation of Maxwell's equation and problem solving in different media. 4 Understanding of propagation of an electromagnetic wave. 5.Basics of antenna ,its radiation behavior and different types of antenna Credits: 4 Compulsory Max. Marks: 25+75 Min. Marks: Total No. of Lectures = 60 Unit Vector Analysis, Poisson's Equation and Laplace Equation: Scalars and Vectors, Unit Vector and Vector I Components, Vector Field, Vector Algebra, Rectangular (Cartesian) Coordinate, Curvilinear Coordinates: Unit Vectors and Scalar Factors, Cylindrical Coordinate and Spherical Coordinate, Differential Length, Area and Volume, Line, Surface and Volume Integrals, Del Operator, Gradient of a Scalar, Divergence of a Vector and Divergence Theorem, Curl of a Vector and Stokes's Theorem, Green's Theorem, Laplacian of a Scalar. Electrostatics: Coulomb's Law, Electric Field and Electric Potential due to Discrete and Continuous Charge Distributions, Electric Flux Density, Gauss's Law – Maxwell's Equation and Applications, Beletric Dipole, Electric Fields in Different Materials, Current and Current Density, Polarization, Dielectric Constant, Linear and Nonlinear, Homogeneous and Inhomogeneous, Isotropic and Anisotropic Dielectrics, Boundary Conditions, Poisson's and Laplace's Equations and Example									
2 Plotting of fields (Electrostatic and Magnetostatics) and solution of Laplace's equation. 3 Physical interpretation of Maxwell's equation and problem solving in different media. 4 Understanding of propagation of an electromagnetic wave. 5.Basics of antenna ,its radiation behavior and different types of antenna Credits: 4 Compulsory Max. Marks: 25+75 Min. Marks: Total No. of Lectures = 60 Unit Vector Analysis, Poisson's Equation and Laplace Equation: Scalars and Vectors, Unit Vector and Vector Components, Vector Field, Vector Algebra, Rectangular (Cartesian) Coordinate, Curvilinear Coordinates: Unit Vectors and Scalar Factors, Cylindrical Coordinate and Spherical Coordinate, Differential Length, Area and Volume, Line, Surface and Volume Integrals, Del Operator, Gradient of a Scalar, Divergence of a Vector and Divergence Theorem, Curl of a Vector and Stokes's Theorem, Graein's Theorem, Laplacian of a Scalar. 14 III Distributions, Electric Field and Electric Potential due to Discrete and Continuous Charge Distributions, Electric Flux Density, Gauss's Law – Maxwell's Equation and Applications, Beiotros, Poisson's and Laplace's Equations and their Derivations and Examples of Solutions, Uniqueness Theorem, Capacitance and Capacitors, Method of Images, Electrostatic Energy and Forces, Energy Density. 12 Magnetostatics: BiotSavart's Law and Applications, Magnetic Flu									
3 Physical interpretation of Maxwell's equation and problem solving in different media. 4 Understanding of propagation of an electromagnetic wave. 5.Basics of antenna ,its radiation behavior and different types of antenna Credits: 4 Compulsory Max. Marks: 25+75 Min. Marks: Total No. of Lectures = 60 Unit Vector Analysis, Poisson's Equation and Laplace Equation: Scalars and Vectors, Unit Vector and Vector I Components, Vector Field, Vector Algebra, Rectangular (Cartesian) Coordinate, Curvilinear Coordinates: Unit Vectors and Scalar Factors, Cylindrical Coordinate and Spherical Coordinate, Differential Length, Area and Volume, Line, Surface and Volume Integrals, Del Operator, Gradient of a Scalar, Divergence of a Vector and Stokes's Theorem, Green's Theorem, Laplacian of a Scalar. 14 Electrostatics: Coulomb's Law, Electric Field and Electric Potential due to Discrete and Continuous Charge II Distributions, Electric Flux Density, Gauss's Law – Maxwell's Equation and Applications, Electric Dipole, Electric Fields in Different Materials, Current and Current Density, Polarization, Dielectric Constant, Linear and Nonlinear, Homogeneous and Inhomogeneous, Isotropic and Anisotropic Dielectrics, Boundary Conditions, Poisson's and Laplace's Equations and their Derivations and Examples of Solutions, Uniqueness Theorem, Capacitance and Capacitors, Method of Images, Electrostatic Energy and Forces, Energy Density. Magnetostatics									
4 Understanding of propagation of an electromagnetic wave. 5.Basics of antenna ,its radiation behavior and different types of antenna Credits: 4 Compulsory Max. Marks: 25+75 Min. Marks:									
5.Basics of antenna, its radiation behavior and different types of antenna Credits: 4 Compulsory Max. Marks: 25+75 Min. Marks: Total No. of Lectures = 60 Unit Total No. of Lectures = 60 Unit Vector Analysis, Poisson's Equation and Laplace Equation: Scalars and Vectors, Unit Vector and Vector I Vector Analysis, Poisson's Equation and Laplace Equation: Scalars and Vectors, Unit Vector and Vector I Vector Analysis, Poisson's Equation and Laplace Equation: Scalars and Vectors, Unit Vector and Vector I Vector Analysis, Poisson's Equation and Laplace Equation: Scalars and Vectors, Unit Vector and Vector I Vector Analysis, Poisson's Equation and Laplace Equation: Scalars and Vectors, Unit Vector and Vector I Vector Analysis, Poisson's Equation and Laplace Equation: Scalars and Vectors, Unit Vector and Vector I Vector Analysis, Poisson's Equation and Laplace Equation: Scalars and Vectors, Unit Vector and Vector I Vector Analysis, Poisson's Equation and Laplace Equation: Scalars and Vectors, Unit Vector and Vector I Vector Analysis, Poisson's Equation and Laplace Teguation: Scalars and Vectors, Unity Vector and Scalar. III Electrostaic: Fourd Coordi									
Credits: 4 Compulsory Max. Marks: 25+75 Min. Marks: Total No. of Lectures = 60 Unit Topics No. of Lectures I Vector Analysis, Poisson's Equation and Laplace Equation: Scalars and Vectors, Unit Vector and Vector 14 Vector Analysis, Poisson's Equation and Laplace Equation: Scalars and Vectors, Unit Vector and Vector 14 Vectors and Scalar Factors, Cylindrical Coordinate and Spherical Coordinate, Differential Length, Area and Volume, Line, Surface and Volume Integrals, Del Operator, Gradient of a Scalar, Divergence of a Vector and Divergence Theorem, Curl of a Vector and Stokes's Theorem, Green's Theorem, Laplacian of a Scalar. 14 Electrostatics: Coulomb's Law, Electric Field and Electric Potential due to Discrete and Continuous Charge 12 Distributions, Electric Flux Density, Gauss's Law – Maxwell's Equation and Applications, Electric Dipole, Electric Fields in Different Materials, Current and Current Density, Polarization, Dielectric Constant, Linear and Nonlinear, Homogeneous and Inhomogeneous, Isotropic and Anisotropic Dielectrics, Boundary Conditions, Poisson's and Laplace's Equations and their Derivations and Examples of Solutions, Uniqueness Theorem, Capacitance and Capacitors, Method of Images, Electrostatic Energy and Forces, Energy Density. Magnetostatics: BiotSavart's Law and Applications, Magnetic Dipole, Ampere's Circuital Law – Maxwell's Equation and Application, Scalar and Vector									
Max. Marks: 25+75 Min. Marks: Total No. of Lectures = 60 Unit Topics No. of Lectures I Vector Analysis, Poisson's Equation and Laplace Equation: Scalars and Vectors, Unit Vector and Vector I Components, Vector Field, Vector Algebra, Rectangular (Cartesian) Coordinate, Curvilinear Coordinates: Unit Vectors and Scalar Factors, Cylindrical Coordinate and Spherical Coordinate, Differential Length, Area and Volume, Line, Surface and Volume Integrals, Del Operator, Gradient of a Scalar, Divergence of a Vector and Divergence Theorem, Curl of a Vector and Stokes's Theorem, Green's Theorem, Laplacian of a Scalar. 14 III Electrostatics: Coulomb's Law, Electric Field and Electric Potential due to Discrete and Continuous Charge Distributions, Electric Fields in Different Materials, Current and Current Density, Polarization, Dielectric Constant, Linear and Nonlinear, Homogeneous and Inhomogeneous, Isotropic and Anisotropic Dielectrics, Boundary Conditions, Poisson's and Laplace's Equations and their Derivations and Examples of Solutions, Uniqueness Theorem, Capacitance and Capacitors, Method of Images, Electrostatic Energy and Forces, Energy Density. 12 Magnetostatics: BiotSavart's Law and Applications, Magnetic Flux Density – Maxwell's Equation, Scalar and Vector 14	Э.Б		ion behavior and d						
Total No. of Lectures = 60 Unit Topics Lecture I Components, Poisson's Equation and Laplace Equation: Scalars and Vectors, Unit Vector and Vector 14 I Components, Vector Field, Vector Algebra, Rectangular (Cartesian) Coordinate, Curvilinear Coordinates: Unit 14 Vectors and Scalar Factors, Cylindrical Coordinate and Spherical Coordinate, Differential Length, Area and 14 Volume, Line, Surface and Volume Integrals, Del Operator, Gradient of a Scalar, Divergence of a Vector and 14 Divergence Theorem, Curl of a Vector and Stokes's Theorem, Green's Theorem, Laplacian of a Scalar. 12 II Distributions, Electric Flux Density, Gauss's Law – Maxwell's Equation and Applications, Electric Dipole, Electric Fields in Different Materials, Current and Current Density, Polarization, Dielectric Constant, Linear and Nonlinear, Homogeneous and Inhomogeneous, Isotropic and Anisotropic Dielectrics, Boundary Conditions, Poisson's and Laplace's Equations and their Derivations and Examples of Solutions, Uniqueness Theorem, Capacitance and Capacitors, Method of Images, Electrostatic Energy and Forces, Energy Density. 13 III Magnetostatics: BiotSavart's Law and Applications, Magnetic Dipole, Ampere's Circuital Law – Maxwell's 14		Credits: 4		Compulsory					
UnitTopicsNo. of LectureIVector Analysis, Poisson's Equation and Laplace Equation: Scalars and Vectors, Unit Vector and Vector Components, Vector Field, Vector Algebra, Rectangular (Cartesian) Coordinate, Curvilinear Coordinates: Unit Vectors and Scalar Factors, Cylindrical Coordinate and Spherical Coordinate, Differential Length, Area and Volume, Line, Surface and Volume Integrals, Del Operator, Gradient of a Scalar, Divergence of a Vector and Divergence Theorem, Curl of a Vector and Stokes's Theorem, Green's Theorem, Laplacian of a Scalar.14IIElectrostatics: Coulomb's Law, Electric Field and Electric Potential due to Discrete and Continuous Charge Distributions, Electric Flux Density, Gauss's Law – Maxwell's Equation and Applications, Electric Constant, Linear and 		Max. Marks: 25+7	5	Min. Marks:					
UnitTopicsLecturIVector Analysis, Poisson's Equation and Laplace Equation: Scalars and Vectors, Unit Vector and Vector14IComponents, Vector Field, Vector Algebra, Rectangular (Cartesian) Coordinate, Curvilinear Coordinates: Unit Vectors and Scalar Factors, Cylindrical Coordinate and Spherical Coordinate, Differential Length, Area and Volume, Line, Surface and Volume Integrals, Del Operator, Gradient of a Scalar, Divergence of a Vector and Divergence Theorem, Curl of a Vector and Stokes's Theorem, Green's Theorem, Laplacian of a Scalar.14IIElectrostatics: Coulomb's Law, Electric Field and Electric Potential due to Discrete and Continuous Charge Distributions, Electric Flux Density, Gauss's Law – Maxwell's Equation and Applications, Electric Constant, Linear and Nonlinear, Homogeneous and Inhomogeneous, Isotropic and Anisotropic Dielectrics, Boundary Conditions, Poisson's and Laplace's Equations and their Derivations and Examples of Solutions, Uniqueness Theorem, Capacitance and Capacitors, Method of Images, Electrostatic Energy and Forces, Energy Density.12IIIMagnetostatics: BiotSavart's Law and Applications, Magnetic Dipole, Ampere's Circuital Law – Maxwell's Equation and Applications, Magnetic Flux Density – Maxwell's Equation, Scalar and Vector14				Total No. of Lectures $= 60$					
IComponents, Vector Field, Vector Algebra, Rectangular (Cartesian) Coordinate, Curvilinear Coordinates: Unit Vectors and Scalar Factors, Cylindrical Coordinate and Spherical Coordinate, Differential Length, Area and Volume, Line, Surface and Volume Integrals, Del Operator, Gradient of a Scalar, Divergence of a Vector and Divergence Theorem, Curl of a Vector and Stokes's Theorem, Green's Theorem, Laplacian of a Scalar.14IIElectrostatics: Coulomb's Law, Electric Field and Electric Potential due to Discrete and Continuous Charge Distributions, Electric Flux Density, Gauss's Law – Maxwell's Equation and Applications, Electric Constant, Linear and Nonlinear, Homogeneous and Inhomogeneous, Isotropic and Anisotropic Dielectrics, Boundary Conditions, Poisson's and Laplace's Equations and their Derivations and Examples of Solutions, Uniqueness Theorem, Capacitance and Capacitors, Method of Images, Electrostatic Energy and Forces, Energy Density.12IIIMagnetostatics: BiotSavart's Law and Applications, Magnetic Dipole, Ampere's Circuital Law – Maxwell's Equation and Applications, Magnetic Flux Density – Maxwell's Equation, Scalar and Vector14	Unit				No. of Lectures				
Vectors and Scalar Factors, Cylindrical Coordinate and Spherical Coordinate, Differential Length, Area and Volume, Line, Surface and Volume Integrals, Del Operator, Gradient of a Scalar, Divergence of a Vector and Divergence Theorem, Curl of a Vector and Stokes's Theorem, Green's Theorem, Laplacian of a Scalar.12IIElectrostatics: Coulomb's Law, Electric Field and Electric Potential due to Discrete and Continuous Charge Electric Fields in Different Materials, Current and Current Density, Polarization, Dielectric Constant, Linear and 	_								
Volume, Line, Surface and Volume Integrals, Del Operator, Gradient of a Scalar, Divergence of a Vector and Divergence Theorem, Curl of a Vector and Stokes's Theorem, Green's Theorem, Laplacian of a Scalar.IIElectrostatics: Coulomb's Law, Electric Field and Electric Potential due to Discrete and Continuous Charge Distributions, Electric Flux Density, Gauss's Law – Maxwell's Equation and Applications, Electric Dipole, Electric Fields in Different Materials, Current and Current Density, Polarization, Dielectric Constant, Linear and Nonlinear, Homogeneous and Inhomogeneous, Isotropic and Anisotropic Dielectrics, Boundary Conditions, Poisson's and Laplace's Equations and their Derivations and Examples of Solutions, Uniqueness Theorem, Capacitance and Capacitors, Method of Images, Electrostatic Energy and Forces, Energy Density.Magnetostatics: BiotSavart's Law and Applications, Magnetic Dipole, Ampere's Circuital Law – Maxwell's Equation and Applications, Magnetic Flux Density – Maxwell's Equation, Scalar and Vector	I				14				
Divergence Theorem, Curl of a Vector and Stokes's Theorem, Green's Theorem, Laplacian of a Scalar.IIElectrostatics: Coulomb's Law, Electric Field and Electric Potential due to Discrete and Continuous Charge Distributions, Electric Flux Density, Gauss's Law – Maxwell's Equation and Applications, Electric Dipole, Electric Fields in Different Materials, Current and Current Density, Polarization, Dielectric Constant, Linear and Nonlinear, Homogeneous and Inhomogeneous, Isotropic and Anisotropic Dielectrics, Boundary Conditions, Poisson's and Laplace's Equations and their Derivations and Examples of Solutions, Uniqueness Theorem, Capacitance and Capacitors, Method of Images, Electrostatic Energy and Forces, Energy Density.Magnetostatics: BiotSavart's Law and Applications, Magnetic Dipole, Ampere's Circuital Law – Maxwell's Equation and Applications, Magnetic Flux Density – Maxwell's Equation, Scalar and Vector									
IIElectrostatics: Coulomb's Law, Electric Field and Electric Potential due to Discrete and Continuous Charge Distributions, Electric Flux Density, Gauss's Law – Maxwell's Equation and Applications, Electric Dipole, Electric Fields in Different Materials, Current and Current Density, Polarization, Dielectric Constant, Linear and Nonlinear, Homogeneous and Inhomogeneous, Isotropic and Anisotropic Dielectrics, Boundary Conditions, Poisson's and Laplace's Equations and their Derivations and Examples of Solutions, Uniqueness Theorem, Capacitance and Capacitors, Method of Images, Electrostatic Energy and Forces, Energy Density.12IIIMagnetostatics: BiotSavart's Law and Applications, Magnetic Dipole, Ampere's Circuital Law – Maxwell's Equation and Applications, Magnetic Flux Density – Maxwell's Equation, Scalar and Vector12									
II Distributions, Electric Flux Density, Gauss's Law – Maxwell's Equation and Applications, Electric Dipole, 12 Electric Fields in Different Materials, Current and Current Density, Polarization, Dielectric Constant, Linear and Nonlinear, Homogeneous and Inhomogeneous, Isotropic and Anisotropic Dielectrics, Boundary Conditions, Poisson's and Laplace's Equations and their Derivations and Examples of Solutions, Uniqueness Theorem, Capacitance and Capacitors, Method of Images, Electrostatic Energy and Forces, Energy Density. 11 III Magnetostatics: BiotSavart's Law and Applications, Magnetic Flux Density – Maxwell's Equation, Scalar and Vector									
Electric Fields in Different Materials, Current and Current Density, Polarization, Dielectric Constant, Linear and Nonlinear, Homogeneous and Inhomogeneous, Isotropic and Anisotropic Dielectrics, Boundary Conditions, Poisson's and Laplace's Equations and their Derivations and Examples of Solutions, Uniqueness Theorem, Capacitance and Capacitors, Method of Images, Electrostatic Energy and Forces, Energy Density. III Magnetostatics: BiotSavart's Law and Applications, Magnetic Flux Density – Maxwell's Equation, Scalar and Vector	п				12				
Nonlinear, Homogeneous and Inhomogeneous, Isotropic and Anisotropic Dielectrics, Boundary Conditions, Poisson's and Laplace's Equations and their Derivations and Examples of Solutions, Uniqueness Theorem, Capacitance and Capacitors, Method of Images, Electrostatic Energy and Forces, Energy Density. III Magnetostatics: BiotSavart's Law and Applications, Magnetic Dipole, Ampere's Circuital Law – Maxwell's Equation and Applications, Magnetic Flux and Magnetic Flux Density – Maxwell's Equation, Scalar and Vector					12				
Poisson's and Laplace's Equations and their Derivations and Examples of Solutions, Uniqueness Theorem, Capacitance and Capacitors, Method of Images, Electrostatic Energy and Forces, Energy Density. Magnetostatics: BiotSavart's Law and Applications, Magnetic Dipole, Ampere's Circuital Law – Maxwell's Equation and Applications, Magnetic Flux and Magnetic Flux Density – Maxwell's Equation, Scalar and Vector									
Capacitance and Capacitors, Method of Images, Electrostatic Energy and Forces, Energy Density. Magnetostatics: BiotSavart's Law and Applications, Magnetic Dipole, Ampere's Circuital Law – Maxwell's Equation and Applications, Magnetic Flux and Magnetic Flux Density – Maxwell's Equation, Scalar and Vector									
Magnetostatics:BiotSavart's Law and Applications, Magnetic Dipole, Ampere's Circuital Law – Maxwell'sIIIEquation and Applications, Magnetic Flux and Magnetic Flux Density – Maxwell's Equation, Scalar and Vector									
		Magnetostatics: BiotSav	art's Law and App	olications, Magnetic Dipole, Ampere's Circuital Law – Maxwell's					
	III								
Magnetic Potentials. Magnetization in Materials and Permeability, Anisotropic Materials, Magnetic Boundary									
Conditions, Inductors and Inductances, Mutual and Self Inductance, Magnetic Circuits, Magnetic Energy, 10				tual and Self Inductance, Magnetic Circuits, Magnetic Energy,	10				
Forces, Torque and Moment.					<u> </u>				
Time-Varying Fields and Maxwell's Equations: Faraday's Law of Electromagnetic Induction – Maxwell's IV Equation. Stationary Circuit in Time-Varying Magnetic Field. Transformer and Motional EMF. Displacement	IV								
IV Equation, Stationary Circuit in Time-Varying Magnetic Field, Transformer and Motional EMF, Displacement	1 V	Equation, Stationary Circ	uit in Time-varyii	ng Magnetic Field, Transformer and Motional EMF, Displacement					

Page **24** of **36**

	Current, Maxwell's Equations in Differential and Integral Form and Constitutive Relations, Potential Functions,	12
	Lorentz Gauge and Wave Equation for Potentials, Concept of Retarded Potentials, Electromagnetic Boundary	
	Conditions.	
	Antenna Fundamentals	
	V Antenna Basics: Introduction-Definition, functions and properties of Antenna-Radiation mechanism of Antennas	12
	Antenna Parameters(qualitative study only) : Isotropic Radiator, Antenna Impedance, Radiation	
	resistance, Radiation Pattern, Radiation Power density & Intensity, Gain, Directive Gain & Power Gain, Directive	
	Gain and Directivity, Antenna Efficiency, Effective Area/Aperture, Antenna Bandwidthand Beam Width, Beam	
	Efficiency, Antenna Temperature, Antenna polarization, EIRP, Friis Transmission Formula. Principles of Horn,	
G	Parabolic dish and rectangular Patchantennas.	
Sugg	ested Reading:	
	1.G.S.N Raju, Antennas and Wave Propagation, PEARSON.	
	2. John D. Krauss, Antennas for all Applications, 3/e, TMH.	
	3.Constantine A Balanis, Antenna Theory and Design, 2/e, Wiley Publications.	
	4.R.E Collin, Antennas & Radio Wave Propagation, McGraw Hill, 1985.	
6	5.Thomas A. Milligan, Modern Antenna Design, IEEE PRESS, 2/e, Wiley Interscience. V. SoundaraRajan, Antenna Theory and Wave Propagation, Scietech Publishers, Chennai.	
0.	7. Spiegel, Lipschutz and Spellman, Vector Analysis, Schaum's Outline Series, Tata McGraw Hill.	
	8. Ida, Engineering Electromagnetics, Springer.	
	9. Sadiku, Elements of Electromagnetics, Oxford.	
	10. Rao and Narayanappa, Engineering Electromagnetics, Cengage.	
	11.Hayt, Buck and Akhtar, Engineering Electromagnetics, Tata McGraw Hill.	
	12.Cheng, Field and Wave Electromagnetics, Pearson.	
	13. Edminster, Electromagnetics, Schaum's Outline Series, Tata McGraw Hill.	
	14. Rao, Elements of Engineering Electromagnetics, Pearson.	
	15. Griffiths, Introduction to Electrodynamics, Pearson.	
	16.Jordan and Balmain, Electromagnetic Waves and Radiating Systems, Pearson.	
	Suggestive Digital Platforms / Web Links	
1.	MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/	
2.	National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd	
3.		
4.		

Page **25** of **36**

This course can be opted as an Elective by the students of following subjects

Phy./Chem./Comp. Sc./ Math./Stat

Suggested Continuous Internal Evaluation (CIE) Methods

Total Marks: 25

House Examination/Test: 10 Marks Written Assignment/Presentation/Project / Research Orientation/ Term Papers/Seminar: 10 Marks Class performance/Participation: 5 Marks

Course Prerequisites

Passed Sem I, Th Paper-1

Suggested Equivalent Online Courses

1. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/

2. edX,https://www.edx.org/course/subject/

3. MIT Open Course Ware - Massachusetts Institute of Technology,<u>https://ocw.mit.edu/courses/</u>

4. Swayam - Government of India, https://swayam.gov.in/

5. National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/course.html

Further Suggestions

Program	me/Class: Degree	Year: Third	Semester: Fifth
Paper-2	Theory		Subject: Electronics
Course Code:	B140502T	Course Title:	Microprocessor and Microcontroller
Course Outco	mes:		

At the end of this course, students will be able to

1. Understand the basic blocks of microcomputers i.e CPU, Memory, I/O and architecture of microprocessor and microcontroller

2. Apply knowledge and demonstrate proficiency of designing hardware interface for memory and I/O as well as write assembly language programs for target microprocessor and microcontroller.

3. Derive specifications of a system based on the requirements of the application and select the appropriate microprocessor.

	Credits: 4 Compulsory			
	Max. Marks: 25+75	Min. Marks:		
		Total No. of Lectures $= 60$		
Unit	Topics			
Ι	 Introduction to Microprocessor: Introduction, Applications, Basic Block Diagram, Speed, Word Size, Memory Capacity, Classification of Microprocessors (Mention Different Microprocessors being used). 8085 Microprocessor: Main Features, Architecture, Block Diagram, CPU, ALU, Registers, Flags, Stack Pointer, Program Counter, Data and Address Buses, Control Signals, Pin-Out Diagram and Pin Description. 			
П	Addressing Modes, Instruction Format, Instru- Logical, Branch and Machine Control Instru Operations, Subroutines and Delay Loops C	ration Code, Operand and Mnemonics, Instruction Classification, ructions Set, Data Transfer, Arithmetic, Increment, Decrement, actions, Assembly Language Programming Examples, Stack Call and Return Operations, Use of Counters, Timing and Control le, Machine Cycle, T (Timing)-States, Time Delay.	16	
III		are Interrupts, Vectored and Non-Vectored Interrupts, Latency Time	12	
IV	Partial/Full Memory Decoding, Interfacing	emory Mapped I/O and I/O Mapped I/O and Isolated I/O Structure, of Programmable Peripheral Interface (PPI) Chip (8255), Address ucing of I/O Devices (LEDs and Toggle-Switches as Examples).	12	
V	8051 I/O Port Programming: Introduction	of I/O Port Programming, Pin-Out Diagram of 8051 and their Functions, I/O Port Programming in 8051 (using Assembly	10	

Page **27** of **36**

Suggested Reading:

- 1. Gaonkar, Microprocessor Architecture, Programming and Applications with the 8085, Penram.
- 2. B. Ram, Fundamentals of Microprocessors and Microcomputers, DhanpatRai.
- 3. Krishna Kant, Microprocessors and Microcontrollers: Architecture, Programming and System Design, PHI.
- 4. Mathur and Panda, Microprocessors and Microcontrollers, PHI.
- 5. Shah, 8051 Microcontrollers: MCS 51 Family and its Variants, Oxford.
- 6. Ayala and Gadre, The 8051 Microcontroller and Embedded System using Assembly and C, Cengage.
- 7. Mazidi, Mazidi and McKinlay, The 8051 Microcontroller and Embedded Systems Using Assembly and C, Pearson.

Suggestive Digital Platforms / Web Links

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx
- 4. SwayamPrabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/

This course can be opted as an Elective by the students of following subjects

Phy./Chem./Comp. Sc./ Math./Stat

Suggested Continuous Internal Evaluation (CIE) Methods

Total Marks: 25

House Examination/Test: 10 Marks

Written Assignment/Presentation/Project / Research Orientation/ Term Papers/Seminar: 10 Marks Class performance/Participation: 5 Marks

Passed Sem IV, Th Paper-1

Course Prerequisites

Suggested Equivalent Online Courses

- 1. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 2. edX,https://www.edx.org/course/subject/
- 3. MIT Open Course Ware Massachusetts Institute of Technology, https://ocw.mit.edu/courses//
- 4. Swayam Government of India, https://swayam.gov.in/
- 5. National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/course.html

Further Suggestions

Page **28** of **36**

Programme/Class: Degree	Year: Third	Semester: Fifth	
		oject: Electronics	
Course Code: B140503P	Co	urse Title: Antenna and Microprocessor Lab	
Course Outcomes (COs)			
At the end of this course, students			
1. to understand architecture and			. 11 1.
2. to understand the concept of in timer applications	terrupts and interfacing	with various peripherals and to realize the features of a micr	ocontroller and its
	E's for designing testir	ng and debugging microprocessor based systems.	
		of system that will provide solutions to real world probler	n.
5. Understand working of simpl	e Antenna		
Credits: 2		Core Compulsory / Elective	
Max. Marks: 25+75		Min. Marks:	
Total	No. of Lectures-Tutorial	ls-Practical (in hours per week): L-T-P: 0-0-4	1
Unit	То	pics	No. of
	-		Lectures
A Minune constant	Lab Exper	riment List	
A. Microprocessor Lab 1. Program for 8 Bit Additior	and Subtraction		
2. Program for16 Bit Additio			
3. Program for 8 Bit Multipli			
4. Program for 16Bit Multipl			
5. Program for Square and So			
6. Program for Sorting and S	•		
7. Program for Smallest and		Tav.	
8. Program for Reversing a S	-		
9. Program for Fibonacci seri	e		
10. Program for Factorial of a			
11. Program for B.C.D to Bir		A S C I I to Binary.	
12. Binary to ASCI I Conver	•	~~~~~~~~,	60

Page **29** of **36**

Online Virtual Lab Experiment List / Link rtual Labs at Amrita VishwaVidyapeethamhttps://vlab.amrita.edu/?	
1.Experiment to determine Directivity, Bandwidth, Beamwidth of different types of antenna	
3. Saw Tooth wave	
2. Triangular wave	
23. Study of 8255 chip and generation of 1. Square wave	
22. Interfacing D.A.C	
21. Interfacing A.D.C	
20. Interfacing Matrix Keyboard	
19. Interfacing Stepper motor control	
18. Interfacing Traffic light controller	
17. Program for 1's complement and 2's complement of 8 bit and 16 bit data	
16. Program to display Time(Hours and Minutes)	
15. Interfacing seven segment display to display any character.	
13. Six letter word display. 14. Rolling display	

Page **30** of **36**

Prog	ramme/Class: Degree	Year: Th	nird	Semester: Sixth	
Paper-1	Theory		Subject: Electronics		
Course Co	ode: B140601T	Course Title:	Commun	ication Electronics	
1. To 2. To 3. To 4. On	of this course students will b understand the principles of c study the amplitude modulation learn frequency modulation and completion of course student understand the cellular comm	ommunication on and demodulat nd demodulation will apply engine	techniques	ematical concepts in various communication techniques	
	Credits: 4			Compulsory	
	Max. Marks: 25+75			Min. Marks:	
			Total No	of Lectures $= 60$	
Unit	Topics		No. of Lectures		
I	the AM Wave - Modulation Amplitude Modulation – Evo Transmission. Analog Pulse Modulation	Index – Power re plution of SSB – Channel Capac	lations in th Balanced M ity, Sampli	odulation – Amplitude modulation – Frequency Spectrum of ne AM Wave – AM generation – AM Transmitter Forms of fodulator – Methods of SSB Generation – Vestigial side band ng Theorem, Basic Principles of PAM, PWM and PPM, fultiplexing, TDM and FDM.	16
II	FM GENERATION & TR	ANSMISSION F	Frequency N	And	08
ш	Frequency Changing & Trac	king – Choice of 1 Detection – Bal	IF – AM D anced Slop	r – Super Heterodyne Receiver – Image Frequency Rejection – etection – AGC – SSB Detection. FM Receiver – Amplitude e Detector – Phase Discriminator – Ratio Detector. Direct and	12
IV		em – Quantization		n – PWM Modulation & Detection - PPM Modulation & zation Error – PCM Modulation & Detection - Companding –	08

Page **31** of **36**

CELLULAR COMMUNICATIONConceptof cellular mobile communication – cell and cell splitting, frequency bands used in cellular communication, absolute RF channel numbers (ARFCN), frequency reuse, roaming and hand off, authentication of the SIM card of the subscribers, IMEI number, concept of data encryption, architecture (block diagram) of cellular mobile communication network, CDMA technology, CDMA overview, simplified block diagram of cellular phone handset, Comparative study of GSM and CDMA, 2G, 3G and 4G concepts. 16
Suggested Books:
1. Electronic Communication, George Kennedy, 3rd edition, TMH.
2. Electronic Communication, Roddy and Coolen, 4th edition, PHI.
3. B. C. Sarkar and S. Sarkar, Analog Electronics: Devices and Circuits (Revised edition), Damodar Group (Publishers), Burdwan, ISBN: 978-93-85775-15-4 (2019)
4. Electronic Communication systems, Kennedy & Davis, IV edition-TATA McGraw Hill.
5. Advanced Electronic Communication systems, Wayne Tomasi- 6th edition, Low priced edition- Pearson education
6.Blake, Electronic Communication Systems, Cengage.
7.Kundu, Analog and Digital Communications, Pearson.
8. Taub, Herbert, and Donald L. Schilling. Principles of communication systems. McGraw-Hill Higher Education
9. Kennedy, Electronic Communication System, TMH.
Suggestive Digital Platforms / Web Links
1. MIT Open Learning - Massachusetts Institute of Technology, https://openlearning.mit.edu/
2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx
4. SwayamPrabha - DTH Channel, <u>https://www.swayamprabha.gov.in/index.php/program/</u>
This course can be opted as an Elective by the students of following subjects
Phy./Chem./Comp. Sc./ Math./Stat
Suggested Continuous Internal Evaluation (CIE) Methods
Total Marks: 25
House Examination/Test: 10 Marks
Written Assignment/Presentation/Project / Research Orientation/ Term Papers/Seminar: 10 Marks
Class performance/Participation: 5 Marks
Course Prerequisites
Passed Sem III, Th Paper-1
Sem IV, Th Paper-1

Page **32** of **36**

Suggested Equivalent Online Courses

- 1. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/physics-and-astronomy
- 2. edX,<u>https://www.edx.org/course/subject/physics</u>
- 3. MIT Open Course Ware Massachusetts Institute of Technology, https://ocw.mit.edu/courses/physics/
- 4. Swayam Government of India, https://swayam.gov.in/explorer?category=Physics
- 5. National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/course.html

i. Further Suggestions

Page **33** of **36**

Prog	gramme/Class: Degree	Year: Thi	rd	Semester: Sixth	
	Paper-2	Theory		Subject: Electronics	
Course Code B140602T		Course Title: Linear Integrated Circuits			
At the end 1. Inf 2. Elu	ucidate and design the linear and	s of operational amplicat	ions of an op-amp and sp	output and their compensation techniques. ecial application ICs. C 555 and general purpose op-amp.	
	Credits: 4			Compulsory	
	Max. Marks: 25+75		Min. Mar	۲S:	
			Total No. of Lectures =	= 60	
Unit			Topics		No. of Lectures
I	Basic Operational Amplifier: Concept of differential amplifiers (Dual input balanced and unbalanced output), constant current bias, current mirror, cascaded differential amplifier stages with concept of level translator, block diagram of an operational amplifier (IC 741)				
П		ltage adjustment		put bias current, differential input resistance, nge, common mode rejection ratio, slew rate,	
ш	Op-Amp Circuits: Open and closed loop configuration, Frequency response of an op-amp in open loop and closed loop configurations, Inverting, Non-inverting, Summing and difference amplifier, Integrator, Differentiator, Voltage to current converter.			12	
IV	Signal Conditioning circuit	ts:Sample and ho	old systems, Active	ilters: First order low pass and high pass eject filter, All pass filter, Log and antilog	
V	Multivibrators (IC 555):Blo and Astablemultivibrators.			ltivibrator circuit, Applications of Monostable n, phase detectors, IC565.	12

Page 34 of 36

Suggested Books:

1. Op-Amps and Linear IC's, R. A. Gayakwad, Pearson Education

- 2. Operational amplifiers and Linear Integrated circuits, R. F. Coughlin and F. F. Driscoll, Pearson Education
- 3. Integrated Electronics, J. Millman and C.C. Halkias, Tata McGraw-Hill,

4. Electronic Principals, A.P.Malvino, Tata McGraw-Hill,

5. OP-AMP and Linear Integrated Circuits, K.L.Kishore, Pearson

Suggestive Digital Platforms / Web Links

- 1. MIT Open Learning Massachusetts Institute of Technology, https://openlearning.mit.edu/
- 2. National Programme on Technology Enhanced Learning (NPTEL), https://www.youtube.com/user/nptelhrd
- 3. Uttar Pradesh Higher Education Digital Library, http://heecontent.upsdc.gov.in/SearchContent.aspx
- 4. SwayamPrabha DTH Channel, https://www.swayamprabha.gov.in/index.php/program/

This course can be opted as an Elective by the students of following subjects

Phy./Chem./Comp. Sc./ Math./Stat

Suggested Continuous Internal Evaluation (CIE) Methods

Course Prerequisites

Total Marks: 25

House Examination/Test: 10 Marks

Written Assignment/Presentation/Project / Research Orientation/ Term Papers/Seminar: 10 MarksClass performance/Participation: 5 Marks

Opted / Passed Sem II, Th Paper-1

Sem III, Th Paper-1

Suggested Equivalent Online Courses

- 1. Coursera, https://www.coursera.org/browse/physical-science-and-engineering/
- 2. edX,<u>https://www.edx.org/course/subject/</u>

3. MIT Open Course Ware - Massachusetts Institute of Technology, https://ocw.mit.edu/courses/

- 4. Swayam Government of India, https://swayam.gov.in/
- 5. National Programme on Technology Enhanced Learning (NPTEL), https://nptel.ac.in/course.html

Further Suggestions

Page **35** of **36**

Pro	gramme/Class: Degree	Year: Third		Semester: Sixth	
		S	Subject: Elec	tronics	
Co	ourse Code: B140603P		Course T	itle: IC andCommunication Lab	
		tcomes (COs)			
	e end of this course, stude				
	derstand basics of comm				
		ous analog and digital modulat	tion and dem	odulation	
		igital communication system	anationalan	plifiers and its effect on output and their compe	nantian taaluniayaa
				apprinters and its effect on output and their competing and special application ICs.	isation techniques.
				ication IC 555 and general purpose op-amp.	
	Credits:		· · · ·	Compulsory / Elective	
	Max. Marks:	25+75		Iin. Marks:	
		Total No. of Lectures-Tutor	rials-Practica	l (in hours per week): L-T-P: 0-0-4	
TT*4					No. of
Unit			Горіся		Lectures
			periment Lis	t	
		Amplitude Modulation and Der			
		requency Modulation and Demo			
		Single Side Band Modulation a	ind Demodu	lation	
		Pulse Amplitude Modulation Pulse Width Modulation			
		Pulse Position Modulation			
		Pulse Code Modulation			
	•	mplitude Shift Keying			
	•	requency Shift Keying			
		hase Shift Keying			
	•	p-amp characteristics.			
		1	an inverting a	and non-inverting configuration using an opamp.	

Page **36** of **36**

60